1)高速铁路CPⅢ控制网对于采用高速铁路设计的城际铁路而言,CPⅢ控制网测量精度的程度直接决定着铁路运行的时效性、舒适度及平稳度,因此对CPⅢ控制网的测量精度要求很高。而影响高速铁路CPⅢ控制网测设精度的环节较多,由于要求精度高,任何一个环节出现微小的问题,都可能导致测量成果不合格。在这种情况下,需要认真分析确定误差的来源,从而可以提高测量成果的精度和可靠性,而且可以减少不必要的返工,提高工作效率与效益。2)误差来源分析高速铁路CPⅢ控制网是通过全站仪自由设站后方交会的方式进行测量。例如,××客运专线,其CPⅢ自由设站如图3 5所示。
由于××客运专线CPⅢ控制网测量标志联结件采用固定套筒,直杆轴螺旋式旋入的形式,因此影响测量精度的误差来源主要有以下几点。(1)设备误差①棱镜常数不同:由于棱镜的出厂批次、生产地点等的不同,导致使用同一台仪器不同的棱镜,对同一个位置测量得到的成果有微小的差别,在常规测量中,由于成果精度要求不高,这种差别可以忽略,但在CPⅢ控制网这种高精度的测量过程中。这种差别显得尤为突出。③联结件精度不同:联结件虽然为精工加工产品,但仍可能有个别联结件无法达到测量所需的精度要求。(2)人为因素①测量模式:不同的测量模式,测量得到的距离有可能是不同的,以LeicaTCA1201+为例,同一台仪器,对同一个目标测量得到的距离,采用快速测量模式比采用标准测量模式得到的距离要短1mm左右。②点号错误:由于CPⅢ控制网测量中每个测站有8~13个测量目标,因此人工操作过程中点号可能错误,导致在数据平差过程中无法计算。③目标错误:由于光线对测距和测角精度影响较大,同时也为了避免与其他施工发生冲突,CPⅢ控制网的测设通常选在晚上进行,且由于单个测站观测目标较多,这就导致在测量过程中可能有个别点位测量错误。④联结件安置错误:采用直杆轴螺旋式旋入的形式安置棱镜,由于丝纹较长,在安置的过程中可能出现螺杆、棱镜未安置到位情况。(3)起算数据精度CPⅢ控制网具有很高的内符合精度,在平差过程中需要选用合适的投影面和中央子午线,且成果一致的起算数据进行平差计算。3)误差检核根据《高速铁路工程测量规范》(TB 10601-2009)要求CPⅢ平面自由网平差后方向、距离改正数应满足表3-5要求。CPⅢ平面网约束平差后主要精度指标应满足表3-6要求。
CPⅢ平面网数据超限主要表现为CPⅢ横、纵向边长相对精度超限,改正数超限和点位相对精度超限三部分。4)小结高速铁路CPⅢ控制网测量精度要求高,而影响其精度的环节较多。因此,为保证高精度、高效率的完成测量任务,测量过程中的每个细节都要认真。(1)爱护仪器、棱镜并定期检核,开始测量前必须检查仪器设置是否正确及棱镜是否合格;(2)CPⅢ棱镜安置、CPⅡ对中要认真仔细;(3)气压、温度、湿度在测量过程中要随时关注;(4)尽量选择无风的阴天进行或夜间进行;(5)测量人员与计算人员间要保持良好的沟通,这样才能在出现问题的第一时间准确判断产生问题的原因,并作出正确、妥善的处理。5)问题(1)高速铁路测量平面控制网有CP0,CPⅠ,CPⅡ和CPⅢ。请说明各级平面控制网的名称及其作用。(2)简述高速铁路CPⅢ控制网(轨道控制网)平面测量的要求。(3)高速铁路平面控制测量完成后应提交的成果资料有哪些?
1.说明施工单位在隧道施工前应复测的内容及复测方法。2.说明建立施工坐标系时重新选择投影面的理由,并指出所选最佳投影面的正常高。3.说明隧道内加测高精度陀螺定向边的目的和基本作业步骤。
某待建隧道长约10km,设计单位向施工单位提供的前期;烈绘成果和设计资料包括:1.进、出洞口各4个C级精度的GPS控制点,基准采用2000国家大地坐标系( CGCS2000),中央子午线为×××°50′00″,投影面正常高为500m。2.进、出洞口各2个二等水准点,采用1985国家高程基准。3.隧道的设计坐标、高程、里程桩等。4.……由于现场地形条件的限制,该隧道未设计斜井,拟采用双向开挖施工,贯通面位于隧道的中部。隧道主体为南北偏西走向的直线隧道,隧道坡度一致,施工区中央子午线为×××°10′00″,纬度为40°,进口施工面正常高为750m,出口施工面正常高为850m。施工单位在施工前对已有成果进行了复测,并进行了中央子午线平移和施工坐标系建立等工作。施工坐标系的X轴为进、出洞口中线点连线的水平投影方向,并重新选择投影面洞内平面控制采用双导线分期布设,全站仪的测角精度不低于l″,导线边长控制在200 -600m.角度观测6测回,导线在隧道内向前每推进2km加测一条高精度陀螺定向边,高程控制按二等水准测量的精度要求施测。【问题】1.说明施工单位在隧道施工前应复测的内容及复测方法。2.说明建立施工坐标系时重新选择投影面的理由,并指出所选最佳投影面的正常高。3.说明隧道内加测高精度陀螺定向边的目的和基本作业步骤。
1)工程概况××地铁一期工程南北线(玄武门站至许府巷站)区间圆形隧道(左、右线)与××公路隧道在新模范马路与中央路的丁字路口立体交叉,××公路隧道从地铁区间隧道的上方穿越,并先于地铁盾构隧道施工。××公路隧道在城墙西段采用明挖顺作法施工,围护结构采用SMW工法,主体结构在与地铁隧道相交段为钢筋混凝土箱体结构。主体结构底板为850mm厚钢筋混凝土,垫层为200mm厚素混凝土,并沿××公路隧道纵向设抗拔桩。地铁第一台盾构机第一次从许府巷站南端头左线出发向玄武湖站方向掘进,并于同年10月中旬反向从地铁右线再次穿过××公路隧道。在立体交叉段,地铁盾构与××公路隧道的净间距约为1~2m。由北向南,地铁隧道左线与××公路隧道净间距为1.05.3~1.760m,右线与××公路隧道净间距仅为1.004~1. 711m。在××公路隧道和地铁盾构隧道交叉段,两者之间的最小净距仅为1. 004m,最大净距也不过1.760m。当该段××公路隧道建好后,地铁盾构从××公路隧道下面穿过,将会扰动周围土体,××公路隧道底板的地基反力会有变化,从而影响××公路隧道主体结构受力,可能会产生不利的后果。根据××公路隧道建设指挥部要求,需在地铁盾构穿过××公路隧道时,实时监测地铁盾构施工对××公路隧道的影响,从而指导施工,做到信息化施工。2)监测项目(1)地表沉降监测;(2)××公路隧道底板沉降。3)监测方法(1)地表沉降监测①监测目的。掌握盾构推进时地表沉降规律,盾构推进对地表和地面周围环境的影响程度和影响范围,以指导施工和确保施工安全。②测点布设。距××公路隧道结构边线30m范围(重点监控地段)、金川河地段沿盾构隧道轴线纵向每隔10m布设一个地表测点,其余地段每隔20m布设一个监测点(有房屋地段在空地处布设)。同时,在盾构隧道两侧(约17m)范围内布设地表横向沉陷槽测点,沿××公路隧道中线和金川河边各布设一组。测点埋设主要为工作基点与测点的埋设。工作基点埋设在沉降影响范围以外的稳定区域,并在视野开阔的地方,以利于观测,至少埋设2个工作基点,以便于工作基点互相检核,并且工作基点应与附近水准点联测取得原始高程。(2)××公路隧道底板监测①监测目的。通过实时监测,掌握盾构推进××公路隧道底板的沉降和隆起情况,以指导施工和保证施工安全。监测要求为:当地铁盾构掘进距××公路隧道结构线50m范围内时,实时监测××公路隧道底板下地基反力和土体位移、底板面位移及底板应力变化情况。控制的标准为:隆起值为10mm,允许沉降值为30mm。以控制标准的70%作为预警值。②监测点布设。工作基点布设:工作基点是沉降和隆起测试的基础,本次测试共埋设3个工作基点,距离地铁盾构左线中线50m以外。其中,BMO为隧道施工的水准点,与BMI、BM2 一起构成首级控制网并提供原始高程。工作基点和观测点的埋设均采用在隧道底板钻孔,然后埋入直径16-18rnm、长100-200mm的膨胀螺栓或半圆头钢筋制成。本次沉降和隆起观测的观测点重点布设在××公路隧道底板上。在隧道的南、北线上分别布设三个断面,断面号从北到南分别为NI、NⅡ、NⅢ和SI、SⅡ、SⅢ,每个断面上从西到东的观测点分别用1-13表示。各个断面上的点布设在以地铁盾构为中心的两侧。观测点布设总数为13×6-78个点。4)问题(1)简述变形监测工作的特点。(2)简述变形监测网的网点布设要求。(3)变形观测数据可分为哪几种?简述变形观测数据处理工作内容。
区域似大地水准面精化时,下列数据不需要的是( )。
区域沉降测量数据
区域水准测量数据
区域DEM数据
区域GPS数据
某点的绝对高程(海拔)是该点到( )的铅垂距离。
海平面
赤道面
坐标原点
大地水准面
GPS定位中同一类型同一频率的观测值两两相减后组成双差后,再组成三差观测值,消除了( )。
卫星钟差
卫星钟差、接收机钟差及整周模糊度
卫星钟差、接收机钟差
接收机钟差及整周模糊度
在进行水平角观测时,若一点的观测方向超过两个时,不宜采用( )。
全组合测角法
分组方向观测法
测回法
方向观测法
按照国家标准GB/T 18314-2009《全球定位系统(GPS)测量规范》,GPS测量按其精度分为( )级。
3
4
5
6
县级以上人民政府测绘地理信息主管部门应当建立健全随机抽查机制,这里的随机抽查是指( )。
随机抽查检查对象
随机选派执法人员
随机抽查成果
随机抽查检查对象和选派执法人员