题目

设二维随机变量(X,Y)的分布律为则P{X十Y-2}=( )

  • A

    0.3

  • B

    0.4

  • C

    0.5

  • D

    0.2

A

本题主要考查的知识点是二维离散型随机变量概率的计算.P{X+Y-2}=P{X=2,y=0}+P{X=1,y=1}=0.2+0.1=0.3.

多做几道

是未知参数θ的一个估计量,n是样本容量,若对任何一个ε>o,有,则是θ的 ( )

  • A

    极大似然估计

  • B

    矩估计

  • C

    有效估计

  • D

    相合估计

设总体X服从区间[-2,4]上的均匀分布,x1,x2,···,xn为其样本,则( )

  • A

    n/3

  • B

    1/3

  • C

    3/n

  • D

    3

设是μ0次独立重复A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有 ( )

  • A

    -0

  • B

    -1

  • C

    >0

  • D

    不存在

若x服从[0,2]上的均匀分布,则 ( )

  • A

    1/2

  • B

    1/3

  • C

    1/12

  • D

    1/4

若D(X)=16,D(Y)=25,PXY=0.4,则D(2X-Y)= ( )

  • A

    57

  • B

    37

  • C

    48

  • D

    84

该科目易错题